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Stretched exponentiality and Kohlrausch-Lery decay of optical waveguide modes
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A long-range refractive-index distribution is found to support unconventional optical modes exhibiting a
stretched-exponential feature. For a certain range of parameters they show a Kohlragstaitlaiong the
transverse axis. It is shown that the modes include as a limiting state the algebraically decaying modes
previously presentedS1063-651%98)06602-1

PACS numbsgs): 42.65.Wi, 42.82.Et, 05.98.m, 03.65.Ge

It was shown recently that among graded-index planaapproximation[7] we obtain a Helmholtz equation for the
dielectric waveguides there exists a family of refractive-spherically symmetric modal functici(r) in d dimensions:
index distributions that make possible a bound mode at the
cutoff point where the effective index coincides with the frr+(d—1)r ., —(d—1)2m?r ~2f +[n?(r) —nZ]f =0,
bulk index at infinity[1]. The modal fields supported by the 2
waveguides are more weakly localized than those of above-.
cutoff modes in usual waveguides, in the sense that the evé{\f'th
nescent tails of the former undergo an algebrfaigower- 2,82
law) decay instead of the exponential decay of the latter. The n(r)=ns+2nsAng(r). )
concept of such algebraically decaying mo@g&BbM'’s) was
extended to guided-wave systems allowing the multidimen

sional (d-dimensional mode confinement2]. The mode oy of 4 substrate, and the refractive-index difference be-
field profile presented therein coincides with thelistribu- aan the center and the infinityn is an arbitrary integer

tion in statistics, which includes as a special case the Cauchy,,; jndicates the number of variations along the azimuthal
distribution. Besides such an extension more comprehensiy %) axis of a fiber =2) [7]; g(r) is a nonsingular, continu-

descriptions of nonextensive waveguide modes must be ex5,q fynction representing a graded refractive-index profile

plored. It is expected that a guideline to seeking a generi(:along the radial () axis.(Thus we exclude from our theory

family of such l_musual mo_dgs might be gamgd n the_contexgo_ca"ed step-index structurgslote that for planar systems
of phase transition and critical phenomena in statistical me d=1) the axis is reduced to a single transvers &xis

chanics, because cutoff phenomena in guided-wave optiq_e_ r=|x|, where—<x<c. For fiber geometriesd=2)
appear to be analogous to the statistical-mechanical phenorp-:'xz+yz')1/z In Eq. (3) we assume thay(0)=1 and that
ena. Here it should be noticed that, at a phase transitioa(r)_>0 asr—.>oc Néte that in Eqs(1)—(3) the spatial co-
point, certain statistical-mechanical response functions uni()rdinate is normélized by the vacuum wave numbey) @s
versally fegture a stretched—_exponen'gial decay that includ r T, Koz 7

as a special case a relaxation law first observed _by Kohl- As a generic expression of a nonsingular transverse field
rausch 3,4]. Furthermore, an approach to reformulating Con'exhibiting a Kohlrausch-hwy decay[3.4,6. asr—, we
ventional statistical mechanics in terms of generalized Statiséonsider a six-parameter family e '
tical mechanic$5] on the basis of a generalized entropy and

a Levy family of stable distribution$6] might pertain in the F(r)=for{exd — c(ar?+1)P19, )
framework of the present physics. In this Brief Report a

|0ng-range refractive-index distribution with an alget)raica”ywherefo is a nonvanishing constant, and,CJ 7p,q15) are
decaying tail is found to support localized optical modespositive parameters featuring details of the transverse field
exhibiting the stretched exponentiality. For a certain range ogonfiguration;j is a natural numbefi.e., j=1,2,..). The
parameters they show a Kohlrauschviedecay along the center value and the decaying behavior of the transverse
transverse axis. It is established that the present formalism fg|d, respectively, are given by

indeed comprehensive in the sense that the Kohlrausch-

Hereng:, ng, andAn(<ng) are positive constants govern-
ing, respectively, the effective refractive index, the bulk in-

Lévy-type modes include as a limiting case the ADN!is2] fo/ef? for s=0 (59

previously presented. f(0)= 0 for s>0, (5b)
We consider a dielectric waveguide with a graded

refractive-index profile ind dimensions. With a traveling- f(r)~fors exp—cqar?P) asr—om. (6)

wave phase factor

Note that, irrespective of the value sf df(r)/dr=0 at the
center ¢=0). To maintain conditions of the Kohlrausch-
Levy decay[3,4,6,9 for s=0, we set the condition that the
exponent ofr in the argument of the exponential function in
being implied, from Maxwell equations followed by scalar Eg. (6) must not exceed two, i.e.,

expli[(d—1)m¢+nggz— wt]} (1)
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o<jp=<1. %

Previously a two-parameter trial function similar to E§)

was used in a variational calculus of modes in weakly guid-
ing fibers with a truncated power-law refractive-index profile

[9].
It is interesting to note that fos=0 applying a Fourier
transform ¢—p) to Eq. (6) gives a Pareto distributiof8]

P(p)op (1H2P), (8)

where ¢{p) represents a function in the Fourier-transformed

domain.
Substituting Eq.(4) into Eq. (2) with Eq. (3), we obtain
the two relations

(d—1)°m?=s(s+d—2), 9
n%(r)—nZ=2cjpge{[d+2(j+s—1)]r20-DCLP(r;j)
+2j(p—1)ar?@-VC2 P(r:j)

—2¢jpgar?@=HC2AP)(r;j)}, (10
with an extended Cauchy distribution function
C(r;j)=(ar¥+1)"*~a"r 2 asr—w, (11

whereC*(r;j)=[C(r;j)]*. Note thatC*(r;1) andC(r;1),
respectively, coincide with tdistribution and a Cauchy dis-
tribution.
It follows from Eg. (9) that
s=0 or s=1

for d=1, (129

s=|m| for d=2. (12b
Note that ford=1, s=0 (1) corresponds to the lowest-order
symmetric(antisymmetri¢ mode of a dielectric planar wave-
guide whose refractive-index profile is given by E0).

As r—oo, Eq.(10) becomes

n?(r)—nZe~2cjpqae{[d+2(j +s—1)]aP~tr20P~1
+2j(p—1)aP tr2ir-
— ch pqazp_lrz(sz_l)}

~—(2cjpgaP)?r2@ip—1), (13

Since it has been assumed thét) —0 asr—«, from Eqs.
(3) and(13) it must be required thgip<3. Thus, from this

inequality and Eq.7), as an allowable domain dfp we
derive

0<jp<Li. (14)

From Egs(3), (10), and(13) the effective indexny+ and the
graded-index profilg(r) are determinable: Fgp = 3

Ner=[nZ+(cq)?a1]*?, (15

BRIEF REPORTS

2n,Ang(r)=(cg)’a’
+cqa{[d+2(j+s—1)]r20-DCLP(r;j)
+(1=2j)ar?@=DC2P(r;j)

—cQar?@-Hc2AP)(r; )y}, (16)
otherwise(i.e., for 0<jp<3)
Neff= Ng, (17)

2nAng(r)=2cjpgai[d+2(j+s—1)]r20-DCIP(r;j)
+2j(p—1)ar?@-DC27P(r;))
—2cjpgar?@ -2 (18)

Therefore, from Eqgs(13), (16), and(18), as the asymptotic
behavior ofg(r) in the limit of r —, we obtain

2n,Ang(r)

cq(d+2s—1)aPr-1 for jp=3,
—(2cjpqaP)?r?2iP=1  for 0<jp<3.

(199
(19b)

It should be noted from Eq(6) that solely for {p,s)
=(3,0) the transverse decay of the mode field becomes ex-
ponential[i.e., f(r) ~ foexp(—cqar) asr—c].

Asr—0, from Eqgs.(16) and(18), respectively, it follows
for jp=3 that

2nAng(r)—(cq)?a+cqd+2(j+s—1)]ar?i-Y,

(20)
whereas for & jp<3 that
2nAng(r)—2cjpald+2(j+s—1)]ar?i-Y. (22)
As a consequence, for case J;[) =(1,3),
2nAng(0)=cq(d+cqg+2s)a, (22
for case II: (,p)=(2,3), (3:3), (43),--.,
2ngAng(0)=(cq)?a, (23)
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FIG. 1. Mode field distributions of Eq4) with fy=e, s=0,
cg=1, andj=1 vs a normalized radiusy*% (solid lines. For
comparison the Cauchy distributi@{(r;1) is plotted with a dashed
line.
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2 FIG. 3. Normalized refractive-index distributions of E@3)
z (b) with g=1. The ordinate and the abscissa are as in Fig. 2. The mode
- field profile that is supported by the index distributions is plotted
a with a dashed line in Fig. Ifj=1, s=0, andg=1 in Eq. (31)].
=l
'8 F(R)—e%(1+aR). (30
f Substitution of Eq(30) into Eg. (28) yields
o =
d=1 f(r)—fgorsCa(r;j), (31
0 2 4 6 where fg=f,e® It should be emphasized that for

Radius (s,j)=(0,1) Eq. (31) coincides with the ADM’q1,2] show-
ing at distribution that is familiar as a typical long-range
distribution function in statistics. Further, fors,{,q)
=(0,1,1) Eq.(31) is reduced to the Cauchy distribution.

In this limit (i.e., p—0 with cp=1) the refractive-index
distribution of Eq.(18) can be reduced to

FIG. 2. Normalized refractive-index distributions @ Eq. (16)
for jp=3 and of(b) Eq. (18) for jp= 3 vs a normalized radius. Here
s=0, cq=1, andj=1. The ordinate and the abscissa indicate
(2angAn) "t g(r) and &%, respectively.

and for case lll;j =1, 0<p<3$, .
: P=2 2nAng(r)—2jgaf[d+2(j+s—1)]r20-YC(r;j)

ZHSAng(O)ZZCpq(d-i-ZS)a. (24) —2j(q+1)ar2(2j_1)C2(r;j)}. (32)

Here case IV: &p<1/(2j) for j=2,3,4... isrejected be- »
causeg(0)=0, which conflicts the assumption thgt0)=1.  Skecifically, for (,s)=(1,0) Eq.(32) becomes
Substitutingg(0)=1 into Egs.(22)—(24), we obtain the re-

lations among field ,c,j,p,q,s), index (hs,An), and di- 2n;Ang(r)—2qa[dC(r;1)—2(q+1)ar®C3(r;1)],
mensionality ¢) parameters: (33
2nAn[cq(d+cq+2s)]™t for case I, (25 2nAng(r)~2qa[d—2(q+1)]r? asr—ox. (34)
a=1{[2nAn(cq)~?)! for case I, (26)
nAn[cpg(d+2s)]~t for case Il (27) Note that withq=(D — 2)/2 (whereD>2) anda=a "2 Egs.

(33) and (34) reproduce the refractive-index profile of the

To show graphical representations of the modes, for &ADM's in d dimensiong2]. Also note that as in the context
typical set of waveguide parameters the mode field and thef fractal sciences the differencd-2(q+1), in Eqg. (34

refractive-index distributions are plotted with solid lines in may be termed the codimensipt0]. The mode field and the

Figs. 1 and 2, respectively. refractive-index distributions are shown in Figs.(dashed
It may be interesting to explore what happens in the limitline) and 3, respectively.
of p—0. To this end we rewrite Eq4) as In conclusion, an algebraically decaying refractive-index
distribution along the transvergéhe radial axis has been
f(r)="for{F(R)]™Y, (28)  shown to support unconventional optical modes exhibiting a
stretched-exponential feature. It has been found that for a
F(R)=exdc(aR+1)P], (29)  certain range of shape parameters they show a Kohlrausch-

_ Lévy decay along the transverse axis. It has also been shown
whereR=r? . As p—0 while maintainingcp=1, Taylor that the modes presented herein include as a limiting case the
expanding Eq(29) reduces it to ADM’s previously presented.
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