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Stretched exponentiality and Kohlrausch-Lévy decay of optical waveguide modes

K. Hayata
Department of Social Information, Sapporo Gakuin University, 11 Bunkyodai, Ebetsu 069, Japan

~Received 14 May 1997!

A long-range refractive-index distribution is found to support unconventional optical modes exhibiting a
stretched-exponential feature. For a certain range of parameters they show a Kohlrausch-Le´vy tail along the
transverse axis. It is shown that the modes include as a limiting state the algebraically decaying modes
previously presented.@S1063-651X~98!06602-1#

PACS number~s!: 42.65.Wi, 42.82.Et, 05.90.1m, 03.65.Ge
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It was shown recently that among graded-index pla
dielectric waveguides there exists a family of refractiv
index distributions that make possible a bound mode at
cutoff point where the effective index coincides with th
bulk index at infinity@1#. The modal fields supported by th
waveguides are more weakly localized than those of abo
cutoff modes in usual waveguides, in the sense that the
nescent tails of the former undergo an algebraic~a power-
law! decay instead of the exponential decay of the latter. T
concept of such algebraically decaying modes~ADM’s ! was
extended to guided-wave systems allowing the multidim
sional ~d-dimensional! mode confinement@2#. The mode
field profile presented therein coincides with thet distribu-
tion in statistics, which includes as a special case the Cau
distribution. Besides such an extension more comprehen
descriptions of nonextensive waveguide modes must be
plored. It is expected that a guideline to seeking a gen
family of such unusual modes might be gained in the con
of phase transition and critical phenomena in statistical m
chanics, because cutoff phenomena in guided-wave op
appear to be analogous to the statistical-mechanical phen
ena. Here it should be noticed that, at a phase trans
point, certain statistical-mechanical response functions
versally feature a stretched-exponential decay that inclu
as a special case a relaxation law first observed by K
rausch@3,4#. Furthermore, an approach to reformulating co
ventional statistical mechanics in terms of generalized sta
tical mechanics@5# on the basis of a generalized entropy a
a Lévy family of stable distributions@6# might pertain in the
framework of the present physics. In this Brief Report
long-range refractive-index distribution with an algebraica
decaying tail is found to support localized optical mod
exhibiting the stretched exponentiality. For a certain range
parameters they show a Kohlrausch-Le´vy decay along the
transverse axis. It is established that the present formalis
indeed comprehensive in the sense that the Kohlrau
Lévy-type modes include as a limiting case the ADM’s@1,2#
previously presented.

We consider a dielectric waveguide with a grad
refractive-index profile ind dimensions. With a traveling
wave phase factor

exp$ i @~d21!mf1neffz2vt#% ~1!

being implied, from Maxwell equations followed by scal
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approximation@7# we obtain a Helmholtz equation for th
spherically symmetric modal functionf (r ) in d dimensions:

f rr 1~d21!r 21f r2~d21!2m2r 22f 1@n2~r !2neff
2 # f 50,

~2!

with

n2~r !5ns
212nsDng~r !. ~3!

Hereneff , ns , andDn(!ns) are positive constants govern
ing, respectively, the effective refractive index, the bulk i
dex of a substrate, and the refractive-index difference
tween the center and the infinity;m is an arbitrary integer
that indicates the number of variations along the azimut
~f! axis of a fiber (d52) @7#; g(r ) is a nonsingular, continu-
ous function representing a graded refractive-index pro
along the radial (r ) axis. ~Thus we exclude from our theor
so-called step-index structures.! Note that for planar system
(d51) the axis is reduced to a single transverse (x) axis,
i.e., r[uxu, where2`,x,`. For fiber geometries (d52!,
r 5(x21y2)1/2. In Eq. ~3! we assume thatg(0)51 and that
g(r )→0 asr→`. Note that in Eqs.~1!–~3! the spatial co-
ordinate is normalized by the vacuum wave number (k0) as
k0r→r , k0z→z.

As a generic expression of a nonsingular transverse fi
exhibiting a Kohlrausch-Le´vy decay@3,4,6,8# as r→`, we
consider a six-parameter family

f ~r !5 f 0r s$exp@2c~ar 2 j11!p#%q, ~4!

where f 0 is a nonvanishing constant, and (a,c, j ,p,q,s) are
positive parameters featuring details of the transverse fi
configuration; j is a natural number~i.e., j 51,2, . . .!. The
center value and the decaying behavior of the transve
field, respectively, are given by

f ~0!5 H f 0 /ecq for s50
0 for s.0,

~5a!
~5b!

f ~r !; f 0r s exp~2cqar 2 jp! as r→`. ~6!

Note that, irrespective of the value ofs, d f(r )/dr50 at the
center (r 50). To maintain conditions of the Kohlrausch
Lévy decay@3,4,6,8# for s50, we set the condition that th
exponent ofr in the argument of the exponential function
Eq. ~6! must not exceed two, i.e.,
2481 © 1998 The American Physical Society
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0, jp<1. ~7!

Previously a two-parameter trial function similar to Eq.~6!
was used in a variational calculus of modes in weakly gu
ing fibers with a truncated power-law refractive-index profi
@9#.

It is interesting to note that fors50 applying a Fourier
transform (r→r) to Eq. ~6! gives a Pareto distribution@8#

c~r!}r2~112 jp !, ~8!

wherec~r! represents a function in the Fourier-transform
domain.

Substituting Eq.~4! into Eq. ~2! with Eq. ~3!, we obtain
the two relations

~d21!2m25s~s1d22!, ~9!

n2~r !2neff
2 52c jpqa$@d12~ j 1s21!#r 2~ j 21!C12p~r ; j !

12 j ~p21!ar 2~2 j 21!C22p~r ; j !

22c jpqar 2~2 j 21!C2~12p!~r ; j !%, ~10!

with an extended Cauchy distribution function

C~r ; j !5~ar 2 j11!21;a21r 22 j as r→`, ~11!

whereCx(r ; j )[@C(r ; j )#x. Note thatCx(r ;1) andC(r ;1),
respectively, coincide with at distribution and a Cauchy dis
tribution.

It follows from Eq. ~9! that

s50 or s51 for d51, ~12a!

s5umu for d52. ~12b!

Note that ford51, s50 ~1! corresponds to the lowest-orde
symmetric~antisymmetric! mode of a dielectric planar wave
guide whose refractive-index profile is given by Eq.~10!.

As r→`, Eq. ~10! becomes

n2~r !2neff
2 ;2c jpqa$@d12~ j 1s21!#ap21r 2~ jp21!

12 j ~p21!ap21r 2~ jp21!

22c jpqa2p21r 2~2 jp21!%

;2~2c jpqap!2r 2~2 jp21!. ~13!

Since it has been assumed thatg(r )→0 asr→`, from Eqs.
~3! and~13! it must be required thatjp< 1

2 . Thus, from this
inequality and Eq.~7!, as an allowable domain ofjp we
derive

0, jp< 1
2 . ~14!

From Eqs.~3!, ~10!, and~13! the effective indexneff and the
graded-index profileg(r ) are determinable: Forjp5 1

2

neff5@ns
21~cq!2a1/j #1/2, ~15!
-

2nsDng~r !5~cq!2a1/j

1cqa$@d12~ j 1s21!#r 2~ j -1!C12p~r ; j !

1~122 j !ar 2~2 j 21!C22p~r ; j !

2cqar 2~2 j 21!C2~12p!~r ; j !%, ~16!

otherwise~i.e., for 0, jp, 1
2!

neff5ns , ~17!

2nsDng~r !52c jpqa$@d12~ j 1s21!#r 2~ j 21!C12p~r ; j !

12 j ~p21!ar 2~2 j 21!C22p~r ; j !

22c jpqar 2~2 j 21!C2~12p!~r ; j !%. ~18!

Therefore, from Eqs.~13!, ~16!, and~18!, as the asymptotic
behavior ofg(r ) in the limit of r→`, we obtain

2nsDng~r !

;H cq~d12s21!apr 21 for jp5 1
2 ,

2~2c jpqap!2r 2~2 jp21! for 0, jp, 1
2 .

~19a!
~19b!

It should be noted from Eq.~6! that solely for (jp,s)

5( 1
2 ,0) the transverse decay of the mode field becomes

ponential@i.e., f (r ); f 0exp(2cqar) as r→`#.
As r→0, from Eqs.~16! and~18!, respectively, it follows

for jp5 1
2 that

2nsDng~r !→~cq!2a1/j1cq@d12~ j 1s21!#ar 2~ j 21!,
~20!

whereas for 0, jp, 1
2 that

2nsDng~r !→2c jpq@d12~ j 1s21!#ar 2~ j 21!. ~21!

As a consequence, for case I: (j ,p)5(1,1
2 ),

2nsDng~0!5cq~d1cq12s!a, ~22!

for case II: (j ,p)5(2,1
4 ), (3,16 ), (4,18 ),...,

2nsDng~0!5~cq!2a1/j , ~23!

FIG. 1. Mode field distributions of Eq.~4! with f 05e, s50,
cq51, and j 51 vs a normalized radius,a1/2r ~solid lines!. For
comparison the Cauchy distributionC(r ;1) is plotted with a dashed
line.
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and for case III:j 51, 0,p, 1
2 ,

2nsDng~0!52cpq~d12s!a. ~24!

Here case IV: 0,p,1/(2j ) for j 52,3,4, . . . is rejected be-
causeg(0)50, which conflicts the assumption thatg(0)51.
Substitutingg(0)51 into Eqs.~22!–~24!, we obtain the re-
lations among field (a,c, j ,p,q,s), index (ns ,Dn), and di-
mensionality (d) parameters:

a5H 2nsDn@cq~d1cq12s!#21 for case I,
@2nsDn~cq!22# j for case II,
nsDn@cpq~d12s!#21 for case III.

~25!

~26!

~27!

To show graphical representations of the modes, fo
typical set of waveguide parameters the mode field and
refractive-index distributions are plotted with solid lines
Figs. 1 and 2, respectively.

It may be interesting to explore what happens in the lim
of p→0. To this end we rewrite Eq.~4! as

f ~r !5 f 0r s@F~R!#2q, ~28!

F~R!5exp@c~aR11!p#, ~29!

where R[r 2 j . As p→0 while maintainingcp51, Taylor
expanding Eq.~29! reduces it to

FIG. 2. Normalized refractive-index distributions of~a! Eq. ~16!
for jp5

1
2 and of~b! Eq. ~18! for jp5

1
3 vs a normalized radius. Her

s50, cq51, and j 51. The ordinate and the abscissa indica
(2ansDn)21 g(r ) anda1/2r , respectively.
a
e

t

F~R!→ec~11aR!. ~30!

Substitution of Eq.~30! into Eq. ~28! yields

f ~r !→ f 08r
sCq~r ; j !, ~31!

where f 08[ f 0ec. It should be emphasized that fo
(s, j )5~0,1! Eq. ~31! coincides with the ADM’s@1,2# show-
ing a t distribution that is familiar as a typical long-rang
distribution function in statistics. Further, for (s, j ,q)
5(0,1,1) Eq.~31! is reduced to the Cauchy distribution.

In this limit ~i.e., p→0 with cp51! the refractive-index
distribution of Eq.~18! can be reduced to

2nsDng~r !→2 jqa$@d12~ j 1s21!#r 2~ j 21!C~r ; j !

22 j ~q11!ar 2~2 j 21!C2~r ; j !%. ~32!

Specifically, for (j ,s)5(1,0) Eq.~32! becomes

2nsDng~r !→2qa@dC~r ;1!22~q11!ar 2C2~r ;1!#,
~33!

2nsDng~r !;2qa@d22~q11!#r 22 as r→`. ~34!

Note that withq[(D22)/2 ~whereD.2! anda[a22 Eqs.
~33! and ~34! reproduce the refractive-index profile of th
ADM’s in d dimensions@2#. Also note that as in the contex
of fractal sciences the difference,d22(q11), in Eq. ~34!
may be termed the codimension@10#. The mode field and the
refractive-index distributions are shown in Figs. 1~dashed
line! and 3, respectively.

In conclusion, an algebraically decaying refractive-ind
distribution along the transverse~the radial! axis has been
shown to support unconventional optical modes exhibitin
stretched-exponential feature. It has been found that fo
certain range of shape parameters they show a Kohlrau
Lévy decay along the transverse axis. It has also been sh
that the modes presented herein include as a limiting case
ADM’s previously presented.

FIG. 3. Normalized refractive-index distributions of Eq.~33!
with q51. The ordinate and the abscissa are as in Fig. 2. The m
field profile that is supported by the index distributions is plott
with a dashed line in Fig. 1@f 0851, s50, andq51 in Eq. ~31!#.
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